Понятие кольца, простейшие свойства колец. Кольца: определение, свойства, примеры Аксиомы кольца.

Главная » Понятие кольца, простейшие свойства колец. Кольца: определение, свойства, примеры Аксиомы кольца.
Краткое описание

Определение. Кольцом называется алгебра К = ‹К, +, -, ·, 1› типа (2, 1, 2, 0), главные операции которой удовлетворяют следующим условиям:

Прикрепленные файлы: 1 файл

Кольцо. Определение. Примеры. Простейшие свойства колец. Гомоморфизм и изоморфизм колец.

Определение. Кольцом называется алгебра К = ‹К, +, -, ·, 1› типа (2, 1, 2, 0), главные операции которой удовлетворяют следующим условиям:

  1. алгебра ‹К, +, -› есть абелева группа;
  2. алгебра ‹К, ·, 1› есть моноид;
  3. умножение дистрибутивно относительно сложения, то есть для любых элементов a, b, c из К

(a + b) · c = a · c + b · c, c· (a + b) = c · a + c · b.

Основное множество К кольца К обозначается также через |К|. Элементы множества К называются элементами кольца К.

Опред. Группа ‹К, +, -› называется аддитивной группой кольца К. Нуль этой группы, то есть нейтральный элемент относительно сложения, называется нулем кольца и обозначается 0 или 0 К.

Опред. Моноид ‹К, ·, 1› называется мультипликативным моноидом кольца К. Элемент 1, обозначаемый также через 1 К, являющийся нейтральным относительно умножения, называется единицей кольца К.

Кольцо К называется коммутативным, если a · b = b · a для любых элементов a , b кольца. Кольцо К называется нулевым, если |К| = {0 К }.

Опред. Кольцо К называется областью целостности, если оно коммутативно, 0 К ≠ 1 К и для любых a, b Î К из a· b = 0 следует a = 0 или b = 0.

Опред. Элементы a и b кольца К называются делителями нуля, если a ≠ 0, b ≠ 0 или ba = 0. (Любая область целостности не имеет делителей нуля.)

Пример. Пусть К – множество всех действительных функций, определенных на множестве R действительных чисел. Сумма f + g, произведение f · g, функция

f(-1) и единичная функция 1 определяются: (f + g) (х) = f (х) + g(х);

(f · g)(х) = f(х) · g(х); (–f) (х) =–f (х); 1(х) = 1. Непосредственная проверка показывает, что алгебра ‹К, +, -, ·, 1› является коммутативным кольцом.

Простейшие свойства. Пусть К – кольцо. Так как алгебра ‹К, +, -› есть абелева группа, то для любых элементов a, b, из К уравнение b + x = a имеет единственное решение a + (-b), которое обозначается также через a – b.

  1. если a + b = a, то b = 0;
  2. если a + b = 0, то b = -a;
  3. – (-a) = a;
  4. 0 · a = a · 0 = a;
  5. (-a)b = a(-b) = -(ab);
  6. (-a)(-b) = a · b;
  7. (a – b)c = ac – bc и c(a – b) = ca – cb.

Пусть К = ‹К, +, -, ◦, 1› и К` = ‹К`, +, -, ·, 1`› — кольца. Говорят, что отображение h множества К в К` сохраняет главные операции кольца К, если выполнены условия:

  1. h(a+b)=h(a)+h(b) для любых a, b из кольца К;
  2. h(-a)=-h(a) для любого a из К;
  3. h(a·b) = h(a)◦h(b) для любых a, b из К;
  4. h(1) = 1`.

Опред. Гомоморфизмом кольца К в (на) кольцо К` называется отображение множества К в (на) К`, сохраняющее все главные операции кольца К. Гомоморфизм кольца К на К` называется эпиморфизмом.

Опред. Гомоморфизм h кольца К на кольцо К` называется изоморфизмом, если h является инъективным отображением множества K на К`. Кольца К и К` называются изоморфными, если существуют изоморфизм кольца К на кольцо К`.

В различных разделах математики, а также в применении математики в технике, часто встречается ситуация, когда алгебраические операции производятся не над числами, а над объектами иной природы. Например сложение матриц, умножение матриц, сложение векторов, операции над многочленами, операции над линейными преобразованиями и т.д.

Определение 1. Кольцом называется множество математических объектов, в котором определены два действия − «сложение» и «умножение», которые сопоставляют упорядоченным парам элементов их «сумму» и «произведение», являющиеся элементами того же множества. Данные действия удовлетворяют следующим требованиям:

1. a+b=b+a (коммутативность сложения).

2. (a+b)+c=a+(b+c) (ассоциативность сложения).

3. Существует нулевой элемент 0 такой, что +0=, при любом .

4. Для любого существует противоположный элемент −такой, что +(−)=0.

5. (a+b)c=ac+bc (левая дистрибутивность).

5″. c(a+b)=ca+cb (правая дистрибутивность).

Требования 2, 3, 4 означают, что множество математических объектов образует группу , а вместе с пунктом 1 мы имеем дело с коммутативной (абелевой) группой относительно сложения.

Как видно из определения, в общем определении кольца на умножения не накладывается никаких ограничений, кроме дистрибутивности со сложением. Однако при различных ситуациях возникает необходимость рассматривать кольца с дополнительными требованиями.

6. (ab)c=a(bc) (ассоциативность умножения).

7. ab=ba (коммутативность умножения).

8. Существование единичного элемента 1, т.е. такого ·1=1·a=a , для любого элемента .

9. Для любого элемента элемента существует обратный элемент −1 такой, что aa −1 =−1 a= 1.

В различных кольцах 6, 7, 8, 9 могут выполняться как отдельно так и в различных комбинациях.

Кольцо называется ассоциативным, если выполняется условие 6, коммутативным, если выполнено условие 7, коммутативным и ассоциативным если выполнены условия 6 и 7. Кольцо называется кольцом с единицей, если выполнено условие 8.

Примеры колец:

1. Множество квадратных матриц.

Действительно. Выполнение пунктов 1-5, 5″ очевидна. Нулевым элементом является нулевая матрица. Кроме этого выполняется пункт 6 (ассоциативность умножения), пункт 8 (единичным элементом является единичная матрица). Пункты 7 и 9 не выполняются т.к. в общем случае умножение квадратных матриц некоммутативна, а также не всегда существует обратное к квадратной матрице.

2. Множество всех комплексных чисел.

3. Множество всех действительных чисел.

4. Множество всех рациональных чисел.

5. Множество всех целых чисел.

Определение 2. Всякая система чисел, содержащая сумму, разность и произведение любых двух своих чисел, называется числовым кольцом .

Примеры 2-5 являются числовыми кольцами. Числовыми кольцами являются также все четные числа, а также все целые числа делящихся без остатка на некоторое натуральное число n. Отметим, что множество нечетных чисел не является кольцом т.к. сумма двух нечетных чисел является четным числом.

ОПРЕДЕЛЕНИЕ И ПРИМЕРЫ ГРУППЫ.

Опр1 .Пусть G не пустое множество элементов произвольной природы. G называется группой

1) На множестве G задана бао °.

2) бао ° ассоциативна.

3) Существует нейтральный элемент nÎG.

4) Для любого элемента из G симметричный ему элемент всегда существует и принадлежит такжеG.

Пример. Множество Z – чисел с операцией +.

Опр2 .Группа называется абелевой , если она коммутативна относительно заданной бао °.

Примеры групп:

1) Z,R,Q «+» (Z+)

Простейшие свойства групп

В группе существует единственный нейтральный элемент

В группе для каждого элемента существует единственный симметричный ему элемент

Пусть G — группа с бао °, тогда уравнения вида:

a°x=b и x°a=b (1) — разрешимы и имеют единственное решение.

Доказательство . Рассмотрим уравнения (1) относительно x. Очевидно, что для а $! а». Так как операция ° — ассоциативна, то очевидно x=b°a» — единственное решение.

34. ЧЕТНОСТЬ ПОДСТАНОВКИ*

Определение 1 . Подстановка называется четной , если она разлагается в произведение четного числа транспозиций, и нечетная в противном случае.

Предложение 1 .Подстановка

Является четной <=> — четная перестановка. Следовательно, количество четных подстановок

из n чисел равно n!\2.

Предложение 2 . Подстановки f и f — 1 имеют один характер четности.

> Достаточно проверить, что если — произведение транспозиций, то <

Пример:

ПОДГРУППА. КРИТЕРИЙ ПОДГРУППЫ.

Опр. Пусть G — группа c бао ° и не пустое подмножество HÌG, тогда H называют подгруппой группы G, если H -подгруппа относительно бао° (т.е. ° — бао на Н. И Н с этой операцией группа).

Теорема (критерий подгруппы). Пусть G — группа относительно операции°, ƹHÎG. H является подгруппой <=> «h 1 ,h 2 ÎH выполняется условие h 1 °h 2 «ÎH (где h 2 » — симметричный элемент к h 2).

Док-во. =>: Пусть H — подгруппа (нужно доказать, что h 1 °h 2 «ÎH). Возьмем h 1 ,h 2 ÎH, тогда h 2 «ÎH и h 1 °h» 2 ÎH (так как h» 2 — симметричный элемент к h 2).

<=: (надо доказать, что H — подгруппа).

Раз H¹Æ , то там есть хотя бы один элемент. Возьмем hÎH, n=h°h»ÎH, т.е. нейтральный элемент nÎH. В качестве h 1 берем n, а в качестве h 2 возьмём h тогда h»ÎH Þ » hÎH симметричный элемент к h также принадлежит H.

Докажем, что композиция любых элементов из Н принадлежит Н.

Возьмём h 1 , а в качестве h 2 возьмём h» 2 Þ h 1 °(h 2 «) » ÎH, Þ h 1 °h 2 ÎH.

Пример. G=S n , n>2, α — некоторый элемент из Х={1,…,n}. В качестве H возьмём не пустое множество H= S α n ={fÎ S n ,f(α)=α}, при действии отображения из S α n α остаётся на месте. Проверяем по критерию. Возьмём любые h 1 ,h 2 ÎH. Произведение h 1 . h 2 «ÎH, т.е H — подгруппа, которая называется стационарной подгруппой элемента α.

КОЛЬЦО, ПОЛЕ. ПРИМЕРЫ.

Опр. Пусть К непустое множество с двумя алгебраическими операциями: сложением и умножением. К называется кольцом , если выполняются следующие условия:

1К— абелевагруппа(коммутативна относительно заданной бао °) относительно сложения;

2) умножение ассоциативно;

3умножение дистрибутивно относительно сложения().

Если умножение коммутативно, то К называют коммутативным кольцом . Если относительно умножения есть нейтральный элемент, то К называют кольцом с единицей .

Примеры.

1)Множество Z целых чисел образует кольцо относительно обычных операций сложения и умножения. Это кольцо коммутативно, ассоциативно и обладает единицей.

2) Множества Q рациональных чисел и R действительных чисел являются полями

относительно обычных операций сложения и умножения чисел.

Простейшие свойства колец.

1. Так как К абелева группа относительно сложения, то на К переносятся простейшие свойства групп.

2. Умножение дистрибутивно относительно разности: a(b-c)=ab-ac.

Доказательство. Т.к. ab-ac+ac=ab и a(b-c)+ac=a((b-c)+c)=a(b-c+c)=ab, то a(b-c)=ab-ac.

3. В кольце могут быть делители нуля, т.е. ab=0, но отсюда не следует,что a=0 b=0.

Например, в кольце матриц размера 2´2, существуют элементы не равные нулю такие, что их произведение будет нуль: ,где — играет роль нулевого элемента.

4. a·0=0·а=0.

Доказательство. Пусть 0=b-b. Тогда a(b-b)=ab-ab=0. Аналогично 0·а=0.

5. a(-b)=(-a)·b=-ab.

Доказательство: a(-b)+ab=a((-b)+b)=a·0=0.

6. Если в кольце К существует единица и оно состоит более, чем из одного элемента, то единица не равна нулю, где 1─ нейтральный элемент при умножении; 0 ─ нейтральный элемент при сложении.

7. Пусть К кольцо с единицей, тогда множество обратимых элементов кольца образуют группу относительно умножения, которую называют мультипликативной группой кольца и обозначают K* .

Опр. Коммутативное кольцо с единицей, содержащее не менее двух элементов, в котором любой отличный от нуля элемент обратим, называется полем .

Простейшие свойства поля

1. Т.к. поле — кольцо, то все свойства колец переносятся и на поле.

2. В поле нет делителей нуля,т.е. если ab=0 ,то a=0 или b=0.

Доказательство.

Если a¹0 ,то $ a -1 . Рассмотрим a -1 (ab)=(a -1 a)b=0 , а если a¹0 ,то b=0, аналогично если b¹0

3. Уравнение вида a´x=b, a¹0, b – любое, в поле имеет единственное решение x= a -1 b, или х=b/a.

Решение этого уравнения называется частным.

Примеры. 1)PÌC, P — числовое поле. 2)P={0;1};

называется порядком элемента а. Если такого n не существует, то элемент а называется элементом бесконечного порядка.

Теорема 2.7 (малая теорема Ферма). Если a G и G конечная группа, то a |G| =e .

Примем без доказательства.

Напомним, что каждая группа G, ° является алгеброй с одной бинарной операцией, для которой выполняются три условия, т.е. указанные аксиомы группы.

Подмножество G 1 множества G с той же операцией, что и в группе, называется подгруппой, если G 1 , ° является группой.

Можно доказать, что непустое подмножество G 1 множества G является подгруппой группы G, ° тогда и только тогда, когда множество G 1 вместе с любыми элементами а и b содержит элемент а° b -1 .

Можно доказать следующую теорему.

Теорема 2.8 . Подгруппа циклической группы является циклической.

§ 7. Алгебра с двумя операциями. Кольцо

Рассмотрим алгебры с двумя бинарными операциями.

Кольцом называется непустое множество R , на котором введены две бинарные операции + и ° , называемые сложением и умножением такие, что:

1) R; + является абелевой группой;

2) умножение ассоциативно, т.е. для a,b,c R: (a ° b ° ) ° c=a ° (b ° c) ;

3) умножение дистрибутивно относительно сложения, т.е. для

a,b,c R: a° (b+c)=(a° b)+(а ° c) и (а +b)° c= (a° c)+(b° c).

Кольцо называется коммутативным, если для a,b R: a ° b=b ° a .

Кольцо записываем как R; +, ° .

Так как R является абелевой (коммутативной) группой относительно сложения, то она имеет аддитивную единицу, которую обозначают через 0 или θ и называют нулем. Аддитивную обратную для a R обозначают через -а. При этом в любом кольце R имеем:

0 +x=x+ 0 =x, x+(-x)=(-x)+x=0 , -(-x)=x.

Тогда получаем, что

x° y=x° (y+ 0 )=x° y+ x° 0 x° 0 =0 для х R; x° y=(х + 0 )° y=x° y+ 0 ° y 0 ° y=0 для y R.

Итак, мы показали, что для х R: x ° 0 = 0° х = 0. Однако из равенства x ° y=0 не следует, что х= 0 или у= 0. Покажем это на примере.

Пример. Рассмотрим множество непрерывных на отрезке функций. Введем для этих функций обычные операции сложения и умножения: f(x)+ ϕ (x) и f(x)· ϕ (x) . Как легко видеть, получим кольцо, которое обозначается C . Рассмотрим функцию f(x) и ϕ (x) , изображенные на рис. 2.3. Тогда получим, что f(x) ≡ / 0 и ϕ (x) ≡ / 0, но f(x)· ϕ (x) ≡0.

Мы доказали, что произведение равно нулю, если равен нулю один из множителей: a ° 0= 0 для a R и на примере показали, что может быть, что a ° b= 0 для a ≠ 0 и b ≠ 0.

Если в кольце R имеем, что a ° b= 0, то а называется левым, а b правым делителями нуля. Элемент 0 считаем тривиальным делителем нуля.

f(x)·ϕ(x)≡0
ϕ (x)

Коммутативное кольцо без делителей нуля, отличных от тривиального делителя нуля, называют целостным кольцом или областью целостности.

Легко видеть, что

0 =x° (y+(-y))=x° y+x° (-y), 0 =(x+(-x))° y=x° y+(-x)° y

и поэтому x ° (-y)=(-x) ° y является обратным элементом для элемента х° у, т.е.

х ° (-у ) = (-х )° у = -(х ° у ).

Аналогично можно показать, что (- х) ° (- у) = х° у.

§ 8. Кольцо с единицей

Если в кольце R существует единица относительно умножения, то эту мультипликативную единицу обозначают через 1.

Легко доказать, что мультипликативная единица (как и аддитивная) единственна. Мультипликативную обратную для a R (обратную по умножению) будем обозначать через а-1 .

Теорема 2.9 . Элементы 0 и 1 являются различными элементами ненулевого кольца R .

Доказательство. Пусть R содержит не только 0. Тогда для a ≠ 0 имеем а° 0= 0 и а° 1= а ≠ 0, откуда следует, что 0 ≠ 1, ибо если бы 0= 1, то и их произведения на а совпадали бы.

Теорема 2.10 . Аддитивная единица, т.е. 0, не имеет мультипликативного обратного.

Доказательство. а° 0= 0° а= 0 ≠ 1 для а R . Таким образом, ненулевое кольцо никогда не будет группой относительно умножения.

Характеристикой кольца R называют наименьшее натуральное число k

такое, что a + a + … + a = 0 для всех a R . Характеристика кольца

k − раз

записывается k=char R . Если указанного числа k не существует, то полагаем char R= 0.

Пусть Z – множество всех целых чисел;

Q – множество всех рациональных чисел;

R – множество всех действительных чисел; С – множество всех комплексных чисел.

Каждое из множеств Z, Q, R, C с обычными операциями сложения и умножения является кольцом. Эти кольца являются коммутативными, с мультипликативной единицей, равной числу 1. Эти кольца не имеют делителей нуля, следовательно, являются областями целостности. Характеристика каждого из этих колец равна нулю.

Кольцо непрерывных на функций (кольцо C ) тоже является кольцом с мультипликативной единицей, которая совпадает с функцией, тождественно равной единице на . Это кольцо имеет делители нуля, поэтому не является областью целостности и char C= 0.

Рассмотрим ещё один пример. Пусть М — непустое множество и R= 2M — множество всех подмножеств множества М. На R введем две операции: симметрическую разность А+ В= А В (которую назовём сложением) и пересечение (которое назовём умножением). Можно убедиться, что получили

кольцо с единицей; аддитивной единицей этого кольца будет , а мультипликативной единицей кольца будет множество М. Для этого кольца при любом А, А R , имеем: А+ А = А А= . Следовательно, charR = 2.

§ 9. Поле

Полем называется коммутативное кольцо, у которого ненулевые элементы образуют коммутативную группу относительно умножения.

Приведем прямое определение поля, перечисляя все аксиомы.

Поле – это множество P с двумя бинарными операциями «+ » и «° », называемыми сложением и умножением, такими, что:

1) сложение ассоциативно: для a, b, c R: (a+b)+c=a+(b+c) ;

2) существует аддитивная единица: 0 P, что для a P: a+0 =0 +a=a;

3) существует обратный элемент по сложению: для a P (-a) P:

(-a)+a=a+(-a)=0;

4) сложение коммутативно: для a, b P: a+b=b+a ;

(аксиомы 1 – 4 означают, что поле есть абелева группа по сложению);

5) умножение ассоциативно: для a, b, c P: a ° (b ° c)=(a ° b) ° c ;

6) существует мультипликативная единица: 1 P , что для a P:

1 ° a=a° 1 =a;

7) для любого ненулевого элемента (a ≠ 0) существует обратный элемент по умножению: для a P, a ≠ 0, a -1 P: a -1 ° a = a ° a -1 = 1;

8) умножение коммутативно: для a,b P: a ° b=b ° a ;

(аксиомы 5 – 8 означают, что поле без нулевого элемента образует коммутативную группу по умножению);

9) умножение дистрибутивно относительно сложения: для a, b, c P: a° (b+c)=(a° b)+(a° c), (b+c) ° a=(b° a)+(c° a).

Примеры полей:

1) R;+, — поле вещественных чисел;

2) Q;+, — поле рациональных чисел;

3) C;+, — поле комплексных чисел;

4) пусть Р 2 ={0,1}. Определим, что 1 +2 0=0 +2 1=1,

1 +2 1=0, 0 +2 0=0, 1×0=0×1=0×0=0, 1×1=1. Тогда F 2 = P 2 ;+ 2 , является полем и называется двоичной арифметикой.

Теорема 2.11 . Если а ≠ 0, то в поле единственным образом разрешимо уравнение а° х=b .

Доказательство . a° x=b a-1 ° (a° x)=a-1 ° b (a-1 ° a)° x=a-1 ° b

Пусть (K,+, ·) — кольцо. Так как (K, +) — абелева группа, учитывая свойства групп получим

СВ-ВО 1 . Во всяком кольце (K,+, ·) имеется единственный нулевой элемент 0 и для всякого a ∈ K имеется единственный противоположный ему элемент −a.

СВ-ВО 2. ∀ a, b, c ∈ K (a + b = a + c ⇒ b = c).

СВ-ВО 3. Для любых a, b ∈ K в кольце K существует единственная разность a − b, причем a − b = a + (−b). Таким образом, в кольце K определена операция вычитания, при этом она обладает свойствами 1′-8′.

СВ-ВО 4 . Операция умножения в K дистрибутивна относительно операции вычитания, т.е. ∀ a, b, c ∈ K ((a − b)c = ac − bc ∧ c(a − b) = ca − cb).

Док-во. Пусть a, b, c ∈ K. Учитывая дистрибутивность операции · в K относительно операции + и определение разности элементов кольца, получим (a − b)c + bc = ((a − b) + b)c = ac, откуда по определению разности следует, что (a − b)c = ac − bc.

Аналогично доказывается правый закон дистрибутивности операции умножения относительно операции вычитания.

СВ-В 5. ∀ a ∈ K a0 = 0a = 0.

Доказательство. Пусть a ∈ K и b-произвольный элемент из K. Тогда b − b = 0 и поэтому, учитывая предыдущее свойство, получим a0 = a(b − b) = ab − ab = 0.

Аналогично доказывается, что 0a = 0.

СВ-ВО 6. ∀ a, b ∈ K (−a)b = a(−b) = −(ab).

Доказательство. Пусть a, b ∈ K. Тогда (−a)b + ab = ((−a) + a)b =

0b = 0. Значит, (−a)b = −(ab).

Аналогично доказывается равенство a(−b) = −(ab).

СВ-ВО 7. ∀ a, b ∈ K (−a)(−b) = ab.

Доказательство. В самом деле, применяя дважды предыдущее свойство, получим (−a)(−b) = −(a(−b)) = −(−(ab)) = ab.

ЗАМЕЧАНИЕ. Свойства 6 и 7 называют правилами знаков в кольце.

Из дистрибутивности операции умножения в кольце K относительно операции сложения и свойств 6 и 7 вытекает следующее

СВ-ВО 8. Пусть k, l-произвольные целые числа. Тогда ∀ a, b ∈ K (ka)(lb) = (kl)ab.

Подкольцо

Подкольцом кольца (K,+, ·) называется подмножество H множества K, которое замкнуто относительно операций + и ·, определенных в K, и само является кольцом относительно этих операций.

Примеры подколец:

Так, Z -подкольцо кольца (Q,+, ·), Q-подкольцо кольца (R,+, ·), Rn×n -подкольцо кольца (Cn×n,+, ·), Z[x]-подкольцо кольца (R[x],+, ·), D -подкольцо кольца (C,+, ·).

Во всяком кольце (K,+, ·) само множество K, а также одноэлементное подмножество {0} являются подкольцами кольца (K,+, ·). Это так называемые тривиальные подкольца кольца (K,+, ·).

Простейшие свойства подколец.

Пусть H — подкольцо кольца (K,+, ·), т.е. (H,+, ·) само является кольцом. Значит, (H, +)-группа, т.е. H -подгруппа группы (K, +). Поэтому справедливы следующие утверждения.

СВ-ВО 1. Нулевой элемент подкольца H кольца K совпадает с нулевым элементом кольца K.

СВ-ВО 2 . Для всякого элемента a подкольца H кольца K противоположный ему элемент в H совпадает с −a, т.е. с противоположным ему элементом в K.

СВ-ВО 3. Для любых элементов a и b подкольца H их разность в H совпадает с элементом a − b, т.е. с разностью этих элементов в K.

Признаки подкольца.

ТЕОРЕМА 1 (первый признак подкольца).

Непустое подмножество H кольца K с операциями + и · является подкольцом кольцаK тогда итолькотогда, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a + b ∈ H, (1)

∀ a ∈ H − a ∈ H, (2)

∀ a, b ∈ H ab ∈ H. (3)

Необходимость. Пусть H — подкольцо кольца (K,+, ·). Тогда H -подгруппа группы (K, +). Поэтому по первому признаку подгруппы (в аддитивной формулировке), H удовлетворяет условиям (1) и (2). Кроме того, H замкнуто относительно операции умножения, определенной в K, т.е. H

удовлетворяет и условию (3).

Достаточность. Пусть H ⊂ K, H 6= ∅ и H удовлетворяет условиям (1) − (3). Из условий (1) и (2) по первому признаку подгруппы следует, что H -подгруппа группы (K, +), т.е. (H, +)-группа. При этом, так как (K, +)-абелева группа, (H, +) также абелева. Кроме того, из условия (3) следует, что умножение является бинарной операцией на множестве H. Ассоциативность операции · в H и ее дистрибутивность относительно операции + следуют из того, что такими свойствами обладают операции + и · в K.

ТЕОРЕМА 2 (второй признак подкольца).

Непустое подмножество H кольца K с операциями + и · является

подкольцом кольца K т. и т. т, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a − b ∈ H, (4)

∀ a, b ∈ H ab ∈ H. (5)

Доказательство этой теоремы аналогично доказательству теоремы 1.

При этом используется теорема 2′ (второй признак подгруппы в аддитивной формулировке) и замечание к ней.

7.Поле (определение, виды, свойства, признаки).

Полем называется коммутативное кольцо с единицей e не равно 0, в котором всякий элемент, отличный отнуля имеет обратный.

Классическими примерами числовых полей являются поля (Q,+, ·), (R,+, ·), (C,+, ·).

СВОЙСТВО 1. Во всяком поле справедлив закон сокращения

на общий множитель, отличный от нуля, т.е.

∀ a, b, c ∈ F (ab = ac ∧ a не равно 0 ⇒ b = c).

СВОЙСТВО 2. Во всяком поле нет делителей нуля.

СВОЙСТВО 3. Кольцо (K,+, ·) является полем тогда и только

тогда, когда множество K \ {0} есть коммутативная группа относительно операции умножения.

СВОЙСТВО 4 . Конечное ненулевое коммутативное кольцо (K,+, ·) без делителей нуля является полем.

Частное элементов поля.

Пусть (F,+, ·)-поле.

Частным элементов и поля F, где b не равно 0,

называется такой элемент c ∈ F, что a = bc.

СВОЙСТВО 1. Для любых элементов и поля F, где b не равно 0, существует единственное частное a/b, причем a/b= ab−1.

СВОЙСТВО 2∀ a ∈ F \ {0}

a/a= e и ∀ a ∈ F a/e= a.

СВОЙСТВО 3∀ a, c ∈ F ∀ b, d ∈ F \ {0}

a/b=c/d ⇔ ad = bc.

СВОЙСТВО 4∀ a, c ∈ F ∀ b, d ∈ F \ {0}

СВОЙСТВО 5∀ a ∈ F ∀ b, c, d ∈ F \ {0}

(a/b)/(c/d)=ad/bc

СВОЙСТВО 6∀ a ∈ F ∀ b, c ∈ F \ {0}

СВОЙСТВО 7∀ a ∈ F ∀ b, c ∈ F \ {0}

СВОЙСТВО 8∀ a, b ∈ F ∀ c ∈ F \ {0}

Поле F, единица которого имеет конечный порядок в группе (F, +) p.

Поле единица, которого имеет бесконечный порядок в группе (F, +), называется полем характеристики 0.

8. Подполе (определение, виды, свойства, признаки)

Подполем поля (F,+, ·) называется подмножество множества F, которое замкнуто относительно операций и ·, определенных в F, и само является полем относительно этих операций.

Приведем некоторые примеры подполей Q-подполе поля (R,+, ·);

R-подполе поля (C,+, ·);

справедливы следующие утверждения.

СВОЙСТВО 1. Нулевой элемент подполя поля совпадает с

нулевым элементом поля F.

СВОЙСТВО 2 . Для всякого элемента подполя поля противоположный ему элемент в совпадает с −a, т.е. с противоположным ему элементом в F.

СВОЙСТВО 3. Для любых элементов и подполя поля их

разность в совпадает с a−b т.е. с разностью этих элементов в F.

СВОЙСТВО 4. Единица подполя поля совпадает с единицей

поля F.

СВОЙСТВО 5 . Для всякого элемента подполя поля F, от-

личного от нуля, обратный к нему элемент в совпадает с a−1, т.е. с элементом, обратным к в F.

Признаки подполя.

ТЕОРЕМА 1 (первый признак подполя).

Подмножество поля c операциями +·, содержащее ненулевой

(F,+, ·)

∀ a, b ∈ H a + b ∈ H, (1)

∀ a ∈ H − a ∈ H, (2)

∀ a, b ∈ H ab ∈ H, (3)

∀ a ∈ H \ {0} a−1 ∈ H. (4)

ТЕОРЕМА2 (второй признак подполя).

Подмножество поля c операциями +·, содержащее ненулевой

элемент, является подполем поля (F,+, ·) тогда и только тогда, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a − b ∈ H, (5)

∀ a ∈ H ∀ b ∈ H\{0} a/b ∈ H. (6)

10. Отношение делимости в кольце Z

Утверждение: для любых элементов a,b,c коммутативного кольца на множестве R, справедливы следующие импликации:

1) а|b, b|c => a|c

2) a|b, a|c => a| (b c)

3) a|b => a|bc

для любого a, b Z справедливо:

2) a|b, b≠0 => |a|≤|b|

3)a|b и b|a ó |a|=|b|

Разделить с остатком целое число а на целое число b , значит найти такие целые числа q и r, что можно представить a=b*q + r, 0≤r≥|b|, где q – неполное частное, r- остаток

Теорема: Если a и b Z , b≠0, то а можно разделить на b с остатком,причем неполное частное и остаток определяются однозначно.

Следствие,если a и b Z , b≠0, то b|a ó

11. НОД и НОК

Наибольший общий делитель(НОД) чисел Z называется некоторое число d, удовлетворяющее следующим условиям

1) d является общим делителем т.е. d| , d| …d|

2) d делится на любой общий делитель чисел т.е. d| , d| …d| => d| , d| …d|

Поделиться:

Оставьте комментарий

шестнадцать − 4 =