Формула для нахождения сохранения энергии. Закон сохранения энергии.

Главная » Формула для нахождения сохранения энергии. Закон сохранения энергии.

4.1. Потери механической энергии и работа непотенциальных сил. К.П.Д. Машины

Если бы закон сохранения механической энергии выполнялся в реальных установках (типа машины Обербека), тогда много расчётов можно было бы делать на основе уравнения:

Т о + П о = Т(t) + П(t) , (8)

где: Т о + П о = Е о — механическая энергия в начальный момент времени;

Т(t) + П(t) = Е(t) — механическая энергия в некоторый последующий момент времени t.

Применим формулу (8) к машине Обербека, где можно изменять высоту подъёма груза на нити (центр масс стержневой части установки не меняет своего положения). Поднимем груз на высоту от нижнего уровня (где считаем П =0). Пусть вначале система с поднятым грузом покоится, т.е. Т о = 0, П о = mgh (m — масса груза на нити). После отпуска груза в системе начинается движение и её кинетическая энергия равна сумме энергии поступательного движения груза и вращательного движения стержневой части машины:

Т = + (9)

где — скорость поступательного движения груза;

— угловая скорость вращения и момент инерции стержневой части

Для момента времени, когда груз опускается на нулевой уровень, из формул (4), (8) и (9) получаем:

mgh =
, (10)

где
 0к — линейная и угловая скорости в конце спуска.

Формула (10) представляет собой уравнение, из которого (в зависимости от условий опыта) можно определять скорости и, массу, момент инерции , либо высоту h.

Однако формула (10) описывает идеальный тип установки, при движении частей которой отсутствуют силы трения и сопротивления. Если работа таких сил не равна нулю, тогда механическая энергия системы не сохраняется. Вместо уравнения (8) в этом случае следует записать:

Т о +П о = Т(t) + П(t) + A , (11)

где А — суммарная работа непотенциальных сил за все время движения.

Для машины Обербека получаем:

mgh =
, (12)

где  — линейная и угловая скорости в конце спуска при наличии потерь энергии.

В исследуемой здесь установке действуют силы трения на оси шкива и дополнительного блока, а также силы сопротивления атмосферы при движении груза и вращении стержней. Работа этих непотенциальных сил заметно уменьшает скорости движения частей машины.

В результате действия непотенциальных сил часть механической энергии преобразуется в другие формы энергии: внутреннюю энергию и энергию излучения. При этом работа Аs точно равна суммарному значению этих других форм энергии, т.е. всегда выполняется фундаментальный, общефизический закон сохранения энергии.

Однако в установках, где происходит движение макроскопических тел, наблюдаются потери механической энергии , определяемые величиной работы Аs. Это явление существует во всех реальных машинах. По этой причине вводится специальное понятие: коэффициент полезного действия — к.п.д . Такой коэффициент определяет отношение полезной работы к запасённой (израсходованной) энергии.

В машине Обербека полезная работа равна полной кинетической энергии в конце спуска груза на нити, и к.п.д. определяется формулой:

к.п.д .=  (13)

Здесь П о = mgh — запасённая энергия, израсходованная (преобразованная) в кинетическую энергию машины и в потери энергии, равные Аs, Т к — полная кинетическая энергия в конце спуска груза (формула (9)).

Полная механическая энергия замкнутой системы тел остается неизменной

Закон сохранения энергии можно представить в виде

Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения

Рассмотрим свободное падение тела с некоторой высоты h1 . Тело еще не движется (допустим, мы его держим), скорость равна нулю, кинетическая энергия равна нулю. Потенциальная энергия максимальная, так как сейчас тело находится выше всего от земли, чем в состоянии 2 или 3.

В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h2 меньше h1. Часть потенциальной энергии перешло в кинетическую.

Состояние 3 — это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Главное запомнить

1) Суть закона сохранения энергии

Общая форма закона сохранения и превращения энергии имеет вид

Изучая тепловые процессы, мы будем рассматривать формулу 
При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

Принцип сохранения энергии — абсолютно точен, не зафиксировано случаев его нарушения. Это фундаментальный закон природы, из которого вытекают другие. Поэтому важно правильно понимать его и уметь применять на практике.

Фундаментальный принцип

Общего определения для понятия энергии не существует. Выделяют разные ее виды: кинетическую, тепловую, потенциальную, химическую. Но сути это не проясняет. Энергия — некая количественная характеристика, которая, чтобы бы не происходило, остается постоянной для всей системы. Можно наблюдать, как скользящая шайба останавливается, и заявить: энергия изменилась! На самом деле нет: механическая энергия перешла в тепловую, часть которой рассеялась в воздухе, а часть ушла на плавление снега.

Рис. 1. Переход работы, затрачиваемой на преодоление трения, в тепловую энергию.

Математик, Эмми Нетер, сумела доказать, что постоянство энергии — проявление однородности времени. Эта величина инвариантна относительно переноса вдоль временной координаты, поскольку законы природы с течением времени не меняются.

Будем рассматривать полную механическую энергию (E) и ее виды — кинетическую (T) и потенциальную (V). Если сложить их, то получим выражение для полной механической энергии:

$E = T + V_{(q)}$

Записывая потенциальную энергию, как $V_{(q)}$, указываем, что она зависит исключительно от конфигурации системы. Под q понимаются обобщенные координаты. Это могут быть x, y, z в прямоугольной декартовой системе координат, а могут быть любые другие. Чаще всего имеют дело с декартовой системой.

Рис. 2. Потенциальная энергия в поле тяжести.

Математическая формулировка закона сохранения энергии в механике выглядит так:

$\frac {d}{dt}(T+V_{(q)}) = 0$ – производная полной механической энергии по времени равна нулю.

В привычном, интегральном виде, формула закона сохранения энергии записывается так:

В механике на закон накладываются ограничения: силы, действующие на систему, должны быть консервативным (их работа зависит только от конфигурации системы). При наличии неконсервативных сил, например, трения, механическая энергия переходит в другие виды энергии (тепловую, электрическую).

Термодинамика

Попытки создать вечный двигатель особенно характерны для 18-19 веков — эпохи, когда были сделаны первые паровые машины. Неудачи, тем не менее, привели к положительному результату: было сформулировано первое начало термодинамики:

$Q = \Delta U + A$ – затрачиваемое тепло расходует на совершение работы и на изменение внутренней энергии. Это ни что иное, как закон сохранения энергии, но для тепловых двигателей.

Рис. 3. Схема паровой машины.

Задачи

Груз массой 1 кг, подвешенный на нити L=2 м, отклонили так, что высота поднятия оказалась равной 0,45 м, и отпустили без начальной скорости. Какова будет сила натяжения нити в нижней точке?

Решение:

Запишем второй закон Ньютона в проекции на ось y в момент, когда тело проходит нижнюю точку:

$ma = T – mg$, но, так как $a = \frac {v^2}{L}$, его можно переписать в новом виде:

$m \cdot \frac {v^2}{L} = T – mg$

Теперь запишем закон сохранения энергии, учитывая, что в начальном положении кинетическая энергия равна нулю, а в нижней точке — потенциальная энергия равна нулю:

$m \cdot g \cdot h = \frac {m \cdot v^2}{2}$

Тогда сила натяжения нити равна:

$T = \frac {m \cdot 2 \cdot g \cdot h}{L} + mg = 10 \cdot (0,45 + 1) = 14,5 \: Н$

Что мы узнали?

В ходе урока рассмотрели фундаментальное свойство природы (однородность времени), из которого вытекает закон сохранения энергии, рассмотрели примеры этого закона в разных разделах физики. Для закрепления материала решили задачу с маятником.

Поделиться:

Оставьте комментарий

восемнадцать + шесть =